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ABSTRACT 

 Generative Adversarial Networks (GANs) have gained notoriety by generating highly realistic 

images. The present work explores GAN for simulating High Energy Physics detectors, 

interpreting detector output as three-dimensional images. The demands and requirements of a 

scientific simulation are quite stringent, as compared to the domain of visual images. Image 

characteristics such as pixel intensity and sparsity, for example, have very different distributions. 

Moreover, detector simulation requires conditioning on physics inputs, and domain knowledge 

becomes essential. We, therefore, adjust the pre-processing and incorporate physics-based 

constraints in the loss function. We also introduce a multi-step training process based on transfer 

learning by breaking up the task complexity. Validation of the results primarily consists of a 

detailed comparison to full Monte Carlo in terms of several physics quantities where a high level 

of agreement is found (ranging from a few percent up to 10% across a large particle energy 

range). In addition, we assess the performance by physics unrelated metrics, thereby proving 

further the variability and pertinence through diverse standpoints. We have demonstrated that an 

image generation technique from vision can successfully simulate highly complex physics 

processes while achieving a speedup of more than three orders of magnitude in comparison to 

the standard Monte Carlo. 

I. INTRODUCTION 

 Simulation of particle transport through 

matter is fundamental for interpreting the 

results of High Energy Physics (HEP) 

experiments. The particles undergo complex 

interactions while traversing the detector 

material with stochastic outcomes. The 

modeling of these processes is carried out 

with the help of Monte Carlo (MC) 

techniques that rely on repeated random 

sampling. The MC simulation meets the 

theoretical predictions with a high degree of 

precision but is both time and resource 

intensive. The Worldwide LHC Grid [1] has 

currently more than 50% of its resources 

devoted only to simulation [2]. The future 

High Luminosity LHC [3] will require 100 

times more simulated data, thus surpassing 

the expected resource availability. The HEP 

community is therefore highly motivated to 

explore fast alternatives, often trading some 

accuracy for speed, if only partially, for 

certain applications. Fast simulation is a set 

of established techniques that replaces parts 

of the detailed MC simulation with 

alternative approaches. Currently 

parametrized approaches [4]–[6] or lookup 

tables [7] can provide between 10 and 100 

times speedup, achieving different levels of 
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accuracy. Here we investigate an alternative 

approach based on Deep Neural Networks. 

HEP detectors can be described as 3D 

cameras, recording pictures of particle 

collisions. Calorimeters, in particular, detect 

particles by measuring the energy deposited 

in interactions with matter. Segmented 

calorimeters consist of alternate arrays of 

active sensor material and passive dense 

layers, to ensure that the incoming (primary) 

particle will deposit most of its energy inside 

their volume. The energy depositions in 

calorimeter cells can be compared to the 

monochromatic pixel intensities of a 3D 

image. 

The 3DGAN is a convolutional GAN 

architecture aimed at stimulating the 

calorimeter’s energy response. The 

calorimeter is a bottleneck in most HEP 

simulation pipelines due to a large number 

of complex interactions, taking about 90% 

of simulation time for some experiments [8]. 

The model was developed in several steps. 

The initial proof of concept was a simplified 

prototype demonstrating successful detector 

simulation, conditioned by the energy of the 

primary particle, entering the detector 

perpendicularly to its surface [9]. This 

represented a simplification, given that in 

real-life conditions, particles usually hit the 

detectors from different directions. The 

model was revised to learn a joint 

probability distribution of both the incident 

particle energy and its direction (quantified 

by the incident angle). At this stage, we also 

increased the image size and added new 

domain-related features (details in Section 

IV) in order to improve the accuracy of the 

results. Some preliminary results for this 

configuration were presented in [10], where 

the training was run for a small number of 

epochs and the result validation was limited. 

The current work refines the results and 

describes the architecture, training process, 

and pre-processing in more detail. The 

physicsbased analysis of the results is 

presented in greater detail along with 

additional performance studies from other 

viewpoints. These include classification and 

regression results by a third-party network 

pre-trained on the same data set, as well as a 

more detailed investigation using image 

quality metrics as a function of input 

conditions. 

This paper is organized as follows. Section 

II will briefly review related work focusing 

on HEP applications. It will be followed by 

a description of the training data set and the 

features used for the evaluation of the results 

in Section III. The current approach will 

then be presented in Section IV, together 

with details on the loss function and the 

network architecture. The main design 

choices made during the development 

process will also be discussed. Validation of 

the results from a physics perspective is 

accomplished by a detailed comparison of 

GAN and Monte Carlo as presented in 

Section V. This section also includes an 

investigation of additional validation metrics 

(e.g. structural similarity index) inspired 

from the image processing domain. We will 

conclude by summarizing our main 

contributions and suggestions for future 

work in Section VI. 

II. PREVIOUS WORK 
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Generative models represent a fundamental 

part of deep learning. Over the years this 

field has seen developments in the 

Generative Stochastic Networks [11], to the 

Variational AutoEncoders [12], and 

Generative Adversarial Networks (GAN) 

[13]. In particular, Generative Adversarial 

Networks can successfully generate sharp 

and realistic images with high resolution 

[13]. Inspired by the Game Theory [14], 

adversarial training is defined as a 

competition between two players: a 

generator and a discriminator. The 

discriminator distinguishes real from fake 

images while the generator tries to fool the 

discriminator by producing an output as 

realistic as possible. The process eventually 

results in the generator learning the 

distribution of the real data if given enough 

representation capacity and time. 

There are many variants of the GAN 

methodology, such as WGAN [15], 

StackGAN [16], ProgressiveGAN [17] etc., 

demonstrating the generation of high quality 

and high resolution images. The GAN does 

not rely on the explicit computation of 

probability densities and is thus suitable for 

a wider range of applications. Presently this 

approach has been applied to problems from 

many domains: ranging from generating 

musical notes [18], to natural language [19], 

to medical data [20], [21], to natural scenes 

[13] and image denoising [22]. The 

adversarial approach has also been 

successfully applied to anomaly detection 

tasks for industrial [23] and medical [24] 

applications. Similarly, scientific simulation 

is another domain where GAN has shown 

immense success. Astrophysics [25], [26], 

micorbiology [27], and material composition 

[28], etc., are some of the avenues explored. 

The novelty of our work resides in the high 

granularity (high spatial resolution) of the 

detector we simulate and in the use of three-

dimensional convolutions that are essential 

to preserving all spatial correlations between 

pixels. Our particular pre-processing, loss 

function, and two-step training results in 

high accuracy for a more complex scenario 

in comparison to other GAN applications for 

HEP calorimeter simulation, involving a 

wider range of input variables used for 

conditioning. 

III. DATA SET 

The incoming particle creates an avalanche 

of secondary particles as it traverses the 

detector thus generating a characteristic 

energy deposit pattern (called a ‘‘shower’’). 

 

Each entry or event in the data set 

corresponds to an array of cells centered 

around the barycenter of the particle shower 

as a three dimensional 51 × 51 × 25 

pixelized image. The pixel intensities of this 

image are the energy depositions for the 

calorimeter cells. The energy (EP) and the 

incident angle (θ) of the original particle 
(‘‘primary particle’’) are also stored with 
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each event. The data consist of particles with 

the EP range of 2 GeV to 500 GeV and θ 
range of 60◦ to 120◦ . The training uses 137, 
342 electron events with EP restricted to the 

range of 100 GeV to 200 GeV for the first 

step and 400, 000 events with EP from 2 

GeV to 500 GeV for the second training 

step. The data is divided into a ratio of nine 

to one for train and test sets. While 

additional data is used for the validation and 

detailed analysis presented in Section V 

(filtered for specific energies and angles 

from sets of 50, 000 and 100, 000 events 

respectively). 

The physical characteristics of a particle 

shower are defined by the underlying 

physics processes, the particle type, its 

energy, and incident angle. The 2D 

projections on different planes can be used 

to convey visual information.1 The 

geometry of a shower is essential 

information for particle type and energy 

identification. Frequently used geometrical 

features consist of shower shapes, moments, 

and ratio of energy deposited in different 

parts of a shower. The shower shapes are 

represented by the energies deposited along 

different axes. Shower moments are another 

way of defining the shower geometry. The 

first moment (M1) corresponds to shower 

center, the second moment (M2) to shower 

width, and similarly higher moments to 

higher-order features. The fraction of energy 

deposited in different parts of the shower is 

studied by dividing the shower into three 

parts and comparing the fraction of total 

energy deposited in the first eight cells (R1), 

the middle nine cells (R2), and the last eight 

cells (R3). 

IV. THE 3D CONVOLUTIONAL 

GAN 

The 3DGAN represents the first proof of 

concept for the possibility of using 3D 

convolutional GANs to simulate high 

granularity calorimeters. Our network is 

inspired from the Auxiliary Classifier GANs 

(ACGAN) [34] and InfoGAN [41] concepts. 

These architectures are a natural extension 

of the GAN approach and feature a faster 

convergence and more stable performance 

by introducing auxiliary tasks for the 

discriminator. The GAN application to 

simulation requires the generation of images 

conditioned on a set of continuous inputs, 

thus introducing auxiliary tasks such as 

regression on the conditioning variables, not 

only stabilize the training but also provide 

feedback on the conditioning. With the 

advent of representation learning through 

deeper models, domain knowledge is often 

not required [42]. We present an example of 

combining deep learning with domain 

related constraints since scientific 

simulations must conform to scientific laws. 

 

A. PRE-PROCESSING 

One of the challenges in applying image 

generation techniques to the simulation of 

detector output lies in the large dynamic 

range of the deposited energies in detector 
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cells as compared to pixel intensities in a 

typical RGB image. The cell energy deposits 

can vary over a large range spanning more 

than ten orders of magnitude as shown in 

Figure 2 (right). We explored different pre-

processing procedures aimed at reducing this 

dynamic range. The initial tests using the log 

of the pixel intensity yielded unsatisfactory 

results (highly distorted images). We also 

experimented with the power function of 

pixel intensities using an exponent (p) 

smaller than one. We observed that a smaller 

exponent means faster convergence but 

greater distortion. Figure 2 (right panel) 

compares the pixel intensity distribution for 

different values of the exponent. An 

optimum value of 0.85 improve the 

convergence while retaining accuracy at 

both ends of the spectrum. The generated 

images can be transformed back to the 

original range by simply taking the inverse 

of the power function. 

 

B. THE ARCHITECTURE 

The design of the 3DGAN architecture 

required a long and tedious process of trial 

and error, as well as conventions and 

suggestions from past efforts. The long 

training times and practically unlimited 

choice of architectural hyperparameters do 

not allow an exhaustive search of the entire 

design space, although the model 

development and optimization involved 

extensive investigation of different model 

parameters. The 3DGAN initial prototype 

[9] architecture was inspired by the DCGAN 

[43] architecture: employing four 

convolutional layers in both the generator 

and the discriminator networks. The 

upsampling layers followed the first two 

convolutional layers in the generator. 

Figure 3 shows the final optimized 

architecture for the discriminator (D) and the 

generator (G). The latent space is a vector of 

254 random numbers drawn from a 

Gaussian distribution. The input conditions 

EP and θ are concatenated to this latent 
vector to create the generator input. The 

initial prototype [9] used a Hadamard 

product of the condition EP and the latent 

vector. For the more complex scenario with 

multiple input conditions, we find that 

simply concatenating the conditions to the 

latent vector provides a more compact 

approach with better overall accuracy. A set 

of upsampling layers, at the beginning of the 

generator network, are used to reach the 

required dimensions before the application 

of the convolutions [44]. The initial 

prototype [9] consisted of alternating 

upsampling layers and convolutional layers 

similar to ACGAN [45]. By moving the 

upsampling layers before convolutions we 

have improved the generator learning 

process, obtaining a more realistic output. 

The improvement is most significant for the 

simulation of cells with very small energy 

deposits, occurring mostly in the peripheral 

regions of the image as presented in Figure 2 

left panel. The 3DGAN has a stronger 

generator (seven convolutional layers) than 

the discriminator (with four layers) in order 

to cope with the increase in image 

complexity. A gradually decreasing kernel is 

used for the generator (to generate more 

local features in higher-order layers). The 

geometry of the energy shower, extending 

along the length of the longitudinal 

dimension, while being narrow for the 
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transverse dimensions, influenced the choice 

of the generator kernels in the Z dimension, 

which are kept larger. Experimentation with 

kernels did not have any significant effect on 

model performance thus number of filters 

and kernel sizes are further adjusted in 

consideration to memory constraints and 

image dimensions. 

Batch normalization [46] (with a smaller 

fuzz factor of 10−6 ) is applied to all except 
the first convolutional layer in the 

discriminator and the last two layers in the 

generator, these exclusions are aimed at 

encouraging the large dynamic range for the 

pixel intensities. Relu [47] activation 

function is used for the generator layers to 

induce sparsity while the leakyRelu [48] is 

used for the discriminator hidden layers. The 

discriminator is regularized by a dropout 

[49] of 20% and a single average pooling 

layer after the last convolutional layer 

(additional pooling layers result in 

substantial loss of performance). 

C. LOSS FUNCTION 

The 3DGAN loss function is built from the 

weighted sum of individual terms pertaining 

to the discriminator outputs and constraints. 

The introduction of domain-related 

constraints is essential to achieve a high 

level of accuracy. Figure 4 shows the effect 

of constraining the Esum. Without the 

constraint, Esum for generated images has a 

roughly uniform distribution, but only after 

applying the constraint, the sum is correctly 

mapped to EP. It should be noted that by 

constraining the total deposited energy we 

make sure that the energy conservation is 

preserved. 

 

Equation (1) shows the different components 

of the discriminator loss: the discriminator 

real/fake probability as defined in [13] (LG), 

the primary particle energy regression (LP), 

the total deposited energy (LE), and incident 

angle measurement (LA). The losses are 

balanced by the corresponding weights W. 

The LP and Lθ provide feedback on the 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol23 Issue 02,2023

ISSN No: 2250-3676 www.ijesat.com Page 54



 

 

conditioning of the image, while LE and LA 

help to impose external constraints on the 

images. The generator loss is implemented 

as the inverse of LG together with the 

auxiliary losses and constraints. 

 

The loss components presented in Equation 

(1) are based on different errors. LG is 

implemented as binary crossentropy. LP and 

LE are evaluated as the mean absolute 

percentage error (MAPE), while LA is 

evaluated as the mean absolute error (MAE). 

Figure 4 also demonstrates how the choice 

of the error for the loss term affects the 

quality of results. As Osum and OP are both 

correlated to pixel intensities, thus a 

percentage error results in better 

performance especially at the lower end of 

the spectrum where smaller energies are 

deposited. Apart from some degradation in 

both simulating and predicting these low 

intensities, a slight energy difference at the 

lower end would result in a tiny absolute 

error but a larger percentage error (thus a 

larger gradient), therefore improving the 

training for this region. 

he loss weights are selected roughly 

following the guidelines by Chollet [52] 

according to the type of losses, probable 

values at convergence, and relative 

importance. The losses based on mean 

percentage error are assigned a weight of 

0.1. The WA is assigned a value of 25 and 

the BCE losses are assigned a weight of 3. A 

high level of accuracy is required for the 

correct Esum of the generated images. 

Increasing the weight WE fails to improve 

the performance on LE as shown in Figure 5 

(right), while the performance on LG 

deteriorates (left). Therefore we add another 

step to select the final network based on the 

minimum mean absolute relative error on 

the sampling fraction (using additional 

holdout samples), in the last ten epochs so as 

to retain a high level of accuracy on this 

quantity. 

 

D. TRAINING 

The GAN training converges when the 

discriminator cannot discriminate between 

real and fake samples. The discriminator 

estimates a real/fake probability close to 

50% for both the real and fake images. The 

convergence for the simulation of the more 

complex scenario involving both EP and θ 
could not be accomplished directly, only 

restricting the EP range could finally allow 

the training to converge. We thus apply a 

two-step training based on the transfer 

learning to simulate the full EP range. 

During the first step, we train 3DGAN on 

events with EP in the 100 GeV to 200 GeV 

range. The second training step extends the 

data to events having EP from the full 2 

GeV to 500 GeV range. The final network is 

further selected based on the minimum mean 

relative error (see Section V-F2) on SF in 

the last ten epochs, evaluated on additional 

holdout samples. 
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For each iteration, we train the discriminator 

on a batch of real images and a batch of 

generated images (applying label switching) 

[53]. Adopting a balanced approach, we also 

train the generator twice while freezing the 

discriminator weights. Another modification 

applied to the GAN training process 

involves generating the fake image batch for 

the same input conditions as the real image 

batch instead of randomly sampling the 

input conditions. Thus not only alleviating 

the need to find the complex mapping of EP 

to Esum, as well as having to apply it at run 

time (as performed in [9]). A speedup of 

more than 30% could be achieved for the 

processing time per epoch, as well as 

removing any chances of error due to 

inaccurate mapping. A number of optimizers 

and learning rates were investigated. The 

RMSProp [54] optimizer with a learning rate 

of 0.001 was finally selected on the basis of 

performance, to train the network through 

Stochastic Gradient Descent in mini-batches 

of 64 events since larger batch sizes could 

not be supported due to memory constraints. 

 

Figure 6 right panel compares the LG test 

losses at different stages of the current work 

for the restricted EP range. Restricting the 

EP range started showing some 

improvement in the training losses for the 

initial configuration [9] but the test losses 

(blue) remain highly random. Implementing 

the pre-processing step as explained in 

section IV-A, adjusting the losses, and 

generating images for the same inputs as real 

images denote the training optimization 

(orange), that allows the losses to start 

converging. The architecture optimization 

involves up sampling before convolutions 

and additional layers in the generator (red), 

resulting in decreasing the loss further and 

improving the convergence (the GAN could 

still not converge for the full EP range 

directly thus necessitating the two-step 

training). The left panel shows how the 

real/fake probability (OGAN ) estimated by 

the discriminator for the real (red) and the 

fake (blue) images, has very similar 

distributions, at the end of training. 

V. RESULTS AND DISCUSSION 

As mentioned in Section I, the 3DGAN 

results cannot be compared directly to 

previous approaches as the problem is more 

complex. We thus validate the 3DGAN 

performance by a detailed comparison to the 

Monte Carlo simulation. Established fast 

simulation approaches report an accuracy 

within 10% of the Monte Carlo, thus we aim 

to achieve a similar level for the GAN 

generated events. We test the distributions of 

several physics quantities as a function of 

the main inputs to the simulation process 

(EP and θ). In order to do so, we select 
events in 5 GeV bins for EP and 0.1 rad 

(5.73◦ ) bins for θ, as well as some unbinned 
events, from the unseen data of 100, 000 

random events. The comparisons are 

performed with GAN events generated for 

the same EP and θ values as the MC events. 
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We have computed the mean absolute 

relative errors for the histogram bins 

(BMRE). The detailed physics validation 

involves numerous feature distributions 

compared for different input bins, thus 

resulting in hundreds of histograms. The 

GAN generated events have a close 

agreement with the Monte Carlo, greatly 

surpassing our aimed accuracy level for 

most of the physics features. Only a few 

representative features are presented here in 

order to simplify the discussion. 

 

A. VISUAL COMPARISON 

In order to perform a preliminary visual 

inspection of the results, we build 2D 

projections on different planes of three 

dimensional events. Figure 7 presents an 

example of 2D sections of the MC and GAN 

showers corresponding to electrons entering 

the calorimeter with different energies and 

angles (selected from the tails of the energy 

and angle distributions). The images appear 

visually similar, sharp, and unique. 

B. SAMPLING FRACTION AND 

CALORIMETER RESPONSE 

As explained earlier the Sampling Fraction 

(SF), is correlated to the amount of energy 

recorded by the calorimeter and it depends 

on the particular detector geometry and the 

primary particle type and energy. Figure 8 

demonstrates the close agreement over the 

entire energy range for both ends of the θ 
spectrum. It should be noted here that 

although for the 62◦ bin there is a slightly 
lower SF for the GAN images, yet the 

difference is very small with a mean 

absolute relative error of a few percent for 

the histogram bins. 

 

 

C. PARTICLE SHOWER SHAPES 

Figure 9 presents the energy profiles for the 

showers along the X, Y and Z axes, both in 

linear (full θ range of 60◦ to 120◦ ) and log 
scale (62◦ and 118◦ bins of θ). The network 
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is capable of correctly reproducing the 

spatial distribution of energy deposits as a 

function of the incident angle, across a large 

dynamic range. In the log scale, some 

discrepancies are observed at the edges of 

the simulated volumes, where smaller 

energy depositions occur. The amount of 

energy expected in this region (well below 

10−4 GeV) is below the threshold for this 
detector and comparable to the pedestal 

values. Figure 10 presents the longitudinal 

projection (XY ) for the MC and GAN 

showers for some EP bins proving that the 

agreement in shapes is maintained along the 

entire spectrum. 

 

D. SPARSITY AND CELL ENERGY 

DISTRIBUTION 

The detector cells are mostly empty with 

energy deposited only in less than 20% of 

them. Figure 11 (right) shows the fraction of 

cells where some energy is deposited as a 

function of the threshold used for the cutoff. 

It can be seen that the Monte Carlo and 

GAN images present a similar level of 

sparsity. The energies deposited in the 

calorimeter cells are our pixels intensities. 

Figure 11 (left) shows the MC and the GAN 

agreement in terms of pixel intensities down 

to very low values. It should be noted that at 

around 0.2 × 10−3 GeV the MC intensities 
show a sharp, vertical drop. As expected the 

GAN smooths out this cut. 

 

E. CORRELATIONS 

We study the internal correlation between 

shower features as well as the correlation 

between MC and GAN images. The 

correlations among different shower features 

and the inputs i.e. energy and angle should 

be preserved. We evaluate the correlation 

matrix calculated on different quantities 

such as the shower shapes, Esum, EP, |90◦ − 
θ|, and numbers of hits above a threshold 

(0.2 × 10−3 GeV). Figure 12, the left panel, 
presents the difference between the internal 

correlations present in the MC data and 

those of the GAN images. These correlations 

agree to a considerable extent with a mean 

error of less than 10%. The incident angle θ 
measured in MC and GAN, shown in Figure 

12, right panel, also presents a high level of 

agreement. 

 

F. FURTHER VALIDATION 

The main validation of 3DGAN 

performance involved detailed comparison 

of physics-based features across the whole 

range of the primary energies and the 
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incident angles as explained in Section III. 

We have further explored validation from 

diverse standpoints including further 

mathematical formulation of the physics 

performance, as well as validation by a 

neural network and image quality metrics. 

 

1) VALIDATION BY THIRD PARTY 

NETWORK 

The most popular metrics used in GAN 

literature involve an external pre-trained 

network. Similar to what is done in general 

image generation problems, where the 

output of the inception network is used to 

quantify the generated image quality [55], 

[56], we have used the independently 

developed pre-trained (trained on the same 

dataset) classifier and regressor network 

from Triforce [57] to validate our results. 

We stress here that the actual accuracy is not 

relevant for our test as that depends on the 

Triforce performance, but obtaining a 

similar performance level for GAN and MC 

events is. Figure 13 shows the classification 

and regression results obtained by running 

Triforce on 9834 images from both GAN 

and MC test samples. The GAN images 

show a similar response from the Triforce 

network, as MC images. 

Thus proving that the GAN images contain 

most of the features of the MC data, as 

learnt by the Triforce network. 

2) QUANTIFYING PHYSICS 

PERFORMANCE 

The physics performance validated in 

Section V is based on the study of binned 

distributions, therefore we test several 

histogram distances. The metrics like Chi2 

and Kolmogorov get saturated for small 

discrepancies in a few bins. These metrics 

are highly dependent on external factors like 

binning and ranges and thus are not suitable 

for combining as averages. On the other 

hand, mean errors do not describe well the 

performance over the whole distribution. In 

order to further quantify the performance, 

we calculate the relative errors for individual 

bins of a distribution. The mean of all bin 

errors is then treated as a metric. We have 

calculated this metric on physics features 

like the shower shapes, moments, and 

sampling fraction. These metrics can also be 

combined as a single figure for a future 

hyper-parameter effort. 

 

In the current work we will only explore the 

metric as a function of training epochs for 

the different stages of 3DGAN development. 

The shower shapes provide an example of 

geometrical features that are learned by the 

model implicitly. Figure 14 presents the 

error for shower shapes associated with 

different versions of 3DGAN as described in 
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Section IV-D for the first step of training 

(with restricted EP range). The initial 

configuration has high errors with mean and 

variance decreasing with epochs (red). The 

high values of error can be attributed to the 

tails of the distributions, where the energy 

deposition is very low. The training 

optimization greatly reduces the error yet a 

slight over-fitting can be detected in the later 

epochs (green). In the final implementation 

(blue) the shape distributions improve 

significantly. As observed from Figure 14 

right panel, the training has reached a level 

where the error remains low yet not 

decreasing much with the epochs and the 

MRE metric seems to be saturated. 

The sampling fraction is an example of 

analytical functions of the image. The 

simulation requires a very precise SF and its 

small variation through epochs is significant 

for performance. Figure 15 right panel 

presents the error on SF averaged over 5 

epochs. It can be observed that the error is 

below 10% for most of the training but in 

order to further improve the accuracy, we 

select the final network among the last few 

epochs (10 for current application) based on 

the minimum mean relative error, evaluated 

on holdout samples. 

 

3) IMAGE QUALITY ANALYSIS 

The assessment of the similarity/diversity of 

the generated sample compared to the 

original sample is an important step for the 

development of generative models. In the 

case of simulation, the shower produced by 

particles with the same EP and θ should 
show similar features while retaining the 

expected statistical variance. In order to 

evaluate this aspect, we utilize some metrics 

for image quality assessment. 

The Structural Similarity Index Measure 

(SSIM) [60] has been used for GAN 

performance evaluation [34]. The SSIM 

quantifies the quality of images based on 

their similarity to a reference. For images x 

and y, the SSIM is computed between 

windows from both x and y. If the mean and 

standard deviation of both windows are µx , 

σx and µy, σy respectively, then SSIM is 
given by the following equation (2): 

 

where C1 = (k1 L) 2 and C2 = (k2 L) 2 with 

k1 = 0.01 and k2 = 0.03. The value of ‘‘L’’ 
is usually taken to be equal to the dynamic 

range of the pixel intensities. The parameter 

L thus determines the fuzz factor added 

against the weak denominator to avoid zero 

division. A value of SSIM close to one 

indicates very similar images while a lower 

value indicates more diverse images. In the 

context of GAN, the similarity metric is also 

treated as a measure of diversity. 

The SSIM is sensitive to the pixel dynamic 

range (by the virtue of parameter L) and 

should be adjusted accordingly. Figure 11 

(left) shows that our ‘‘pixel intensities’’ 
have a very different dynamic range as 
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compared to the standard RGB case, with a 

logarithmic difference between the 

maximum and minimum values. Therefore, 

the experiment is repeated for different 

values of L in order to verify the sensitivity 

of the SSIM to our range of pixel intensities 

(energy depositions). 

We measure SSIM for MC images against 

MC images, MC images against GAN 

images, and GAN images against GAN 

images. The events in each set are random 

events from the same EP and θ bin. The 
SSIM value from MC vs. MC images can 

act as a reference to assess the GAN 

performance. 

 

The SSIM value for L = 1 (as generally 

suggested for float intensities) is close to one 

and identical for all three sets of images as 

shown in Figure 16 top row, indicating that 

the index is not sensitive to the difference 

present between individual samples in a bin 

at this scale. The SSIM values decrease with 

L and a difference can be observed between 

MC vs. MC and GAN vs. GAN (indicating 

that the metric is now more sensitive). 

Decreasing L below 10−4 , has no further 

effect. Figure 16 bottom row shows the 

SSIM for L equal to 10−4 . The GAN vs. 
GAN SSIM is slightly higher than MC vs. 

MC, indicating that the GAN samples have 

less diversity in a bin, but is of the same 

order. The SSIM for MC vs. GAN is similar 

to MC vs. MC, proving that GAN images 

come from the same distribution as MC 

images. The figure also shows that SSIM is 

constant across the θ spectrum. 

The Mean Subtracted Contrast Normalized 

Coefficients (MSCN Coefficients) [61] have 

been used for blind image quality 

assessment. The MSCN Coefficients are 

computed by taking the mean and the 

standard deviation of windows in an image. 

Let µ and σ be the mean and standard 
deviation of an image window then a pixel 

intensity I will be converted to coefficient I ∗ by the following equation: 

 

These MSCN Coefficients can then be 

mapped to an image quality score [61]. The 

distributions of the MSCN Coefficients from 

real and fake images have also been used for 

GAN evaluation [62]. The 3DGAN images 

are highly sparse with small energy 

depositions thus the Equation (3) is modified 

as following : 

 

Here we stabilize by adding a fuzz factor in 

the denominator (taking epsilon value equal 

to 10−7 ). The mean (µnonzero) and the 
standard deviation (σnonzero) are evaluated 
considering only the nonzero entries. Figure 

17 compares the histograms of the 
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coefficients as computed using Equation (4) 

for MC and GAN generated images. The 

nature of our data is very different from 

natural scenes and thus the distributions are 

not Gaussian. The MSCN Coefficient 

distributions can still be treated as statistical 

signatures and are almost identical for the 

real and fake images, showing very similar 

features. The Jensen Shannon Distance 

(JSD) between the real and fake 

distributions is very small, thus indicating 

the histograms to be highly similar. 

 

VI. CONCLUSION 

The Monte Carlo simulation of detector 

response is a time and resource intensive 

task. There is a drive in the HEP community 

to find possible fast alternatives while 

maintaining physics accuracy. Fastsim is a 

set of established techniques usually 

replacing parts of the detailed simulation 

where some loss in accuracy can be traded 

for speed. These techniques have been 

incorporated into existing particle simulation 

packages frequently employed in practical 

applications such as GFlash [5], Altfast [4], 

and FastCaloSim [63] etc. We demonstrate 

that the fast simulation based on deep 

learning can surpass these methodologies 

both in speed and accuracy. The detector 

response can be generated as images and 

easily integrated into a detailed simulation, 

in the same manner as existing fast 

simulation methodologies. 

The 3DGAN model is capable of 

reproducing single particle (electron) 

showers for a high granularity calorimeter 

representative of detectors designed for 

future particle accelerators. We have 

validated the 3DGAN performance by 

comparing it with the classical Monte Carlo 

in great detail. The agreement is within a 

few percent over a very large dynamic 

range. This impressive level of agreement 

surpasses similar deep learning-based 

applications to HEP simulation [30] and fast 

simulation approaches based on classical 

methods [5]. The inference time on Intel 

Xeon 8180 is about 13.4 m sec per particle 

whereas about 3.5 m sec per particle on 

GeForce GTX 1080. For comparison, 

GEANT4 can simulate a similar shower in 

about 17 seconds per particle on an Intel 

Xeon 8180 (currently it is not possible to run 

a full GEANT4-based simulation on GPUs). 

Therefore, the 3DGAN provides three orders 

of magnitude speedup. 
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